This instruction implements AFPD 10-21, *Air Mobility Lead Command Roles and Responsibilities*, and also outlines Destination Airfield Suitability Analysis (DASA) as a key planning consideration ensuring the effectiveness and safety of worldwide mobility mission operations. AFPD 10-21 assigns AMC to manage the Mobility Air Forces (MAF) process to formulate destination airport analysis supporting Air Force-wide global MAF operations to include foreign terminal instrument procedure review, airfield suitability, and landing zone assessment products. AMC satisfies this requirement through DASA implementation via the worldwide airfield database (Location Management application) in the Global Decision Support System (GDSS), and also through the Zone Availability Report (ZAR). This instruction focuses on policy supporting GDSS Airfield Detail assessments, and supplements and expands upon both Airfield Suitability and Restrictions Report (ASRR) guidance, as well as guidance found in AMCI 11-208, *Mobility Air Forces Management*. This instruction further delineates DASA procedures, responsibilities, and standards for AMC and AMC-gained mission planning and execution at all organizational levels. It applies to all AMC aircraft, planners, and aircrew, including AMC-gained Air National Guard (ANG) and United States Air Force Reserve (AFRC). Ensure that all records created as a result of processes prescribed in this publication are maintained IAW Air Force Manual (AFMAN) 33-363, and disposed of IAW the Air Force Records Information Management System (AFRIMS) Records Disposition Schedule (RDS). Refer recommend changes and questions about this publication to the Office of Primary Responsibility (OPR) using the AF Form 847, *Recommendation for Change of Publication*, and route it to HQ AMC/A3AS (Airfield Suitability Branch). This publication may be supplemented at any level, but all direct Supplements must be routed to the OPR of this publication for
coordination prior to certification and approval. The authorities to waive requirements in this publication are identified with a Tier ("T-0, T-1, T-2, T-3") number following the compliance statement, and by office symbol for non-Tiered compliance items. See AFI 33-360, *Publications and Forms Management*, Table 1.1, for a description of authorities associated with Tier numbers. Compliance statements targeting MAJCOM units above the wing, direct reporting unit (DRU), or forward operating area (FOA) are not required to be tiered (referred to as non-tiered). Submit requests for waivers to this publication through the chain of command to the appropriate Tier waiver approval authority, or alternately, to the Publication OPR for non-tiered compliance items; see paragraph 1.4 for specific waiver guidance. The use of the name or mark of any specific manufacturer, commercial product, commodity, or service in this publication does not imply endorsement by AMC, the United States Air Force (USAF) or the Department of Defense (DoD).

**SUMMARY OF CHANGES**

This document is substantially revised and must be completely reviewed. Major changes include: Clarification regarding hard surfaced (paved) and other than hard surface (unpaved) or semi-prepared runways; guidance regarding flyability checks to support the TERPS Operational Risk Management (ORM) process; revised waiver requirements for pavement condition and allowable tire pressure; and waiver guidance brought in line with AFI 33-360.

1. **Overview**:

   1.1. **General.** AMC operates mobility aircraft in some of the most challenging flying environments and diverse airfields around the world. MAF aircraft may be tasked to operate into airfields where adherence to established airport maintenance, design, and construction criteria cannot be guaranteed. Additionally, airfields may have non-standard variations and operating practices in place due to unique terrain, obstacles, or other environmental factors. Therefore, all airports and airfields have to be assessed or evaluated to ensure existing conditions and infrastructure can support mobility operations. The consequences of inadequate or improper destination airport suitability assessment can adversely impact mission planning, execution, and potentially result in significant damage to aircraft, infrastructure, pavement, and/or personnel.

   1.2. **Source Document.** This publication is an original source document for many areas however, for efficacy, it also amplifies information found in aircraft flight manuals, Flight Information Publications (FLIP), and other Air Force directives. For matters where this Air Mobility Command Instruction (AMCI) is the source document, waiver guidance is IAW Paragraph 1.4. For matters where this AMCI repeats information in another document, follow waiver authority outlined in the source document.

   1.3. **Purpose.** AMC is the Air Force’s executive agent and lead command for mobility aircraft destination airport suitability analysis. DASA policies serve to optimize resource utilization, sustain appropriate operating practices, and foster action that reduces the danger of airfield hazards during mission planning and execution. These policies are intended to enable throughput capability, support warfighter requirements, enhance operating safety, and reduce operating costs incurred during global operations. The terms airport and airfield are
used interchangeably throughout this publication as a destination location with a paved, hard surface runway intended for aircraft operations.

1.3.1. AMC Combat Operations (A3D) is the approval authority for Landing Zone (LZ) Surveys.

1.3.1.1. Other than hard-surfaced runways (unpaved), as identified in GDSS and the DoD Flight Information Publication (Enroute Supplement), are considered to be “semi-prepared”. Guidance for semi-prepared runways is contained in the ASRR, Air Force Instruction (AFI) 13-217, Drop Zone and Landing Zone Operations, applicable Mission Design Series (MDS) flight manuals, and AFI 11-2MDS Volume 3, Operations Procedures, publications.

1.3.1.2. A3D retains authority to classify a paved, hard surface runway in a tactical, training, or non-standard environment (disaster area, etc.) as a landing zone, however, all airfield requests will flow through AMC Airfield Operations (A3A) and then to A3D. A3D will ensure A3A is notified when the aforementioned designation occurs to prevent confusion regarding airfield status in GDSS.

1.3.1.3. Hard-surfaced landing areas or runways historically treated as a landing zone (have a current or expired survey in the Zone Availability Report (ZAR) and marked for LZ operations) will continue to be treated as an LZ and require a current LZ survey for use. Closed/archived LZ-type airfields, as identified in GDSS, without an airfield manager require an approved LZ survey prior to aircraft operations.

1.4. Waiver Process and Authorities. Air Mobility Command (AMC) has obtained authorization to the Tier Waiver Authorities construct contained in Table 1.1 of AFI 33-360, for operational publications in the 10, 11 and 13 series.

1.4.1. Unless a waiver authority is explicitly designated by office symbol in this publication, Tier 2 waivers (there are no Tier 0 or Tier 1 waivers to this publication) for AMC assigned and gained assets will be reviewed and approved as follows:

1.4.1.1. For AMC operational missions, waiver authority is delegated to 18 AF/CC, the operational mission execution authority. This is in lieu of the AFI 33-360 construct of a waiver at the T-2 level, MAJCOM/CC (delegable no lower than MAJCOM Director).

1.4.1.2. For AMC training mission waivers authority is delegated to HQ AMC/A3/10. For the purposes of this instruction the A3/10 will also act as waiver authority for guidance issues not affiliated with an operational mission, unless otherwise specified.

1.4.1.3. The PAG/CC is delegated waiver authority for all Presidential Airlift Group missions.

1.4.2. Waivers will be submitted using the AF Form 679, Air Force Publication Compliance Item Waiver Request/Approval, or via e-mail or memorandum if the form is unavailable. The ASRR is considered non-tiered compliance guidance and the same form will be used for waivers to that document.

1.4.3. TERPS waivers are in accordance with AFI 11-230.
1.4.4. Waiver authority for non-tiered compliance items is the HQ AMC/A3/10 (may be delegated to DA3/10).

1.5. **GDSS Airfield Detail.** AMC actively formulates airfield suitability assessments for airports worldwide that serve as the standard for mobility aircraft. AMC airfield suitability assessments (known colloquially as the AMC “Giant Report”) are maintained in the GDSS under the Airfield Detail window. Planners will review the Giant Report Airfield Detail assessment in GDSS when doing feasibility study and/or mission planning. NOTE: The terms “airfield database” and “AFD” have been replaced in GDSS by the Location Management Application (LM App).

1.5.1. The GDSS Airfield Detail/Giant Report is an assessment which provides a planning foundation for safe operations at an airfield, but does not replace the need for detailed mission planning or pre-flight planning. Additionally, plans for sustained, robust operations at a potential operating location will frequently require an airfield survey or expeditionary site survey plan to be completed in order to determine installation and bed-down capabilities.

1.5.2. To establish a GDSS account, contact your GDSS Unit Program Account Manager (UPAM) or contact the GDSS Functional Help Desk via e-mail at: gdss.fhd.all@us.af.mil. If you have any problems or questions, please contact the GDSS Help Desk at DSN 312-576-4949 or commercial 618-256-4949; be sure to listen for and select the appropriate options to ensure you access assistance for GDSS. Any DoD service member or employee is able to establish a GDSS account for access to ASRR and Airfield Detail.

1.6. **ASRR.** Continual advances in aviation technology and procedures in turn drive a need to periodically update and revise airfield assessment processes and guidance. Accordingly, AMC outlines current and detailed destination airport suitability assessment policies and procedures in the ASRR. The ASRR establishes detailed suitability methodology for AMC and AMC-gained aircraft operations, and is an approved pre-mission planning tool prescribed for use by numerous instructions, including: AFI 11-230, *Instrument Procedures*, and AFI 11-2MDSV3, *Operations Procedures*, publications for C-5, C-17, C-21, C-130, C-130J, KC-10, C/KC-135; and by AFI 11-2VIPV3, *VIP Operations Procedures*, for C-20, C-32, C-37, C-40 (see References at Attachment 1).

1.6.1. GDSS Airfield Detail suitability assessments (Giant Reports) are an extension of the ASRR. AMC aircraft use data published in GDSS Airfield Detail and procedures outlined in the ASRR unless otherwise specified in applicable AFI 11-2MDSV3.

1.6.2. A copy of the ASRR and individual airfield assessments from the GDSS database can be obtained by contacting the AMC Airfield Help Desk: Airfield.Helpdesk@us.af.mil or DSN 312-779-3112. Access to all Airfield Detail assessments is only available electronically via access to GDSS (registration required). Once registration is completed, access is only possible through the GDSS web application by means of a Common Access Card (CAC) enabled computer on a military domain (.mil system). The GDSS web application site is: https://gdss.maf.ustranscom.mil.
2. Application, Accountability and Scope:

2.1. Application. DASA policies outlined in this document apply to all AMC and AMC-gained aircraft, however, AMC has delegated sole responsibility for destination airport suitability analysis for Presidential Airlift Group (PAG) aircraft operations to the PAG Commander (PAG/CC). In addition, no reference to the VC-25 is included in any section of the Airfield Detail assessment in GDSS.

2.2. Accountability. The AMC Airfield Suitability branch (AMC/A3AS) is the Office of Primary Responsibility (OPR) for command DASA policies. However, as governed by AFI 11-202V3, *General Flight Rules*, the pilot in command (PIC) is final authority for the safe operation of the aircraft on any airfield.

2.3. Scope. For the purposes of this instruction, destination airport suitability analysis means the ability to adequately plan for and analyze paved surfaces, ground obstacles, and apply Terminal Instrument Procedures (TERPS) and other command policy guidance (e.g., day only restricted, Special Pilot-In-Command airport, etc.) to ensure safe aircraft operations at a specific airfield.

2.3.1. Airfield assessments can become complex for large mobility aircraft that have significant operating gross weights which place considerable stress on pavement, and wide wingspans that commonly extend beyond the edge of runways, taxiways, and/or parking aprons. Additionally, at outside the continental United States (OCONUS) airfields without a US Government (USG) published instrument procedure, a TERPS review is required unless exempted as specified in AFI 11-230.

2.3.2. AMC airfield suitability assessments in the ASRR and GDSS contain detailed airfield pavement, available obstacle information, and, when necessary, unique operations policy guidance for all airport locations in the database. Additionally, when available, completed TERPS reviews and appropriate command-specific instrument procedure guidance are also posted to GDSS.

3. Key DASA Attributes and Procedures:

3.1. Paved Airfield Movement Surfaces. Any airfield pavement surface intended for aircraft operations possesses several attributes that must be analyzed in order to adequately and properly assess whether it is suitable for intended aircraft operations. At a minimum, these include: geometrics, surface type, strength, condition, and aircraft tire pressure limits as applicable.

3.1.1. Pavement geometrics. A runway which does not meet minimum landing distance available (LDA) and/or width requirements is unsuitable for aircraft type unless waived by appropriate authority outlined in applicable AFI 11-2MDSV3. Approval to operate on runways more narrow than prescribed must ensure the capability to turn around on the runway (or designated turnaround area) or to maneuver via suitable taxiways for subsequent takeoff while also ensuring any existing obstacles will not be a factor for operations. Likewise, approval to operate on taxiways more narrow than prescribed per AFI 11-2MDSV3 must ensure adequate clearance from ground obstructions that originally may not have been analyzed for aircraft type. (T-2)
3.1.2. **Pavement surface type.** Mobility aircraft are designed to operate on prepared, paved runways with hard surface composition (rigid or flexible). Mobility Air Force (MAF) aircraft historically have incurred substantial damage as the result of takeoff and landing on semi-prepared (unpaved) surfaces. In an effort to reduce damage, AMC aircraft, except C-17 and C-130, are restricted from operating on semi-prepared runway surfaces. C-17 and C-130 adhere to Semi-Prepared Runway Operations (SPRO) guidance in the ASRR, AFI 11-2MDSV3 and AFI 13-217.

3.1.2.1. Paved/prepared, hard surface runway types are identified in DoD FLIP (Enroute Supplement), however, AMC considers surface material to be paved regardless of FLIP designation with endorsement of AMC Civil Engineer Operations (AMC/A4OC).

3.1.2.2. On a case-by-case basis, after consulting with A4OC, hard surfaced runways with very thin pavement (4 inches thickness or less) may be considered a semi-prepared landing zone with a FOD sealer.

3.1.2.3. Appropriately trained and equipped personnel perform tactical LZ assessments in support of airlift operations and determine LZ suitability IAW AFI 13-217 and applicable Air Force and/or AMC guidance.

3.1.3. **Pavement strength.** Pavement strength is also known as weight bearing capacity (WBC), or load-bearing capability, and it limits aircraft operations when the rated value is not sufficient to support planned aircraft gross weight. A paved surface that is overloaded increases the risk of structural deformation or failure and can result in expensive, unintended consequences such as aircraft Foreign Object Damage (FOD) and/or significant pavement repair costs. Unfortunately, a standard, universally recognized method for determining and reporting airfield pavement strength does not exist. The International Civil Aviation Organization (ICAO) has adopted the Aircraft Classification Number (ACN)/Pavement Classification Number (PCN) system. The Air Force Civil Engineer Center (AFCEC) also utilizes the PCN method adopted by ICAO, but it is important to keep in mind that values are dependent upon aircraft type and pass intensity, and these factors are not standardized between ICAO and AFCEC (nor amongst AFCEC and the Army and Navy). Many airfields under Federal Aviation Administration (FAA) jurisdiction still report pavement strength using aircraft gear type. The National Geospatial-Intelligence Agency (NGA) uses Load Classification Number (LCN) to denote pavement strength for many locations that do not use the ACN/PCN method. Finally, some foreign airports report pavement strength based on air traffic, or do not report it at all.

3.1.3.1. AMC pavement strength evaluation procedures and pavement overload operations are coordinated through AMC Civil Engineer Operations (A4OC).

3.1.3.2. Acceptable data sources for pavement strength or WBC include: DoD or FAA FLIP; AFCEC pavement reports; NGA; Major Command (MAJCOM) Airfield Survey reports; pavement reports published by other services (i.e., Army, Navy) if available; appropriate host nation aeronautical information publication (AIP); Expeditionary Site Plan (ESP) reports; and other reports and/or methodology approved by A4OC. When there is conflicting pavement strength or WBC information between various sources, the Airfield Suitability office (AMC/A3AS)
will consult with AMC Civil Engineer Operations (A4OC) to determine which data source is most appropriate for planning. Planners should only use the airfield WBC values published in GDSS/ASRR. Where information conflicts with information contained in other publications, contact AMC/A3AS or the AMC Airfield Help Desk (airfield.helpdesk@us.af.mil) to validate correct information.

3.1.3.3. Coordinate with airfield manager or senior airfield authority to obtain approval to operate at aircraft gross weights higher than WBC values published in the GDSS/ASRR. Operating at gross weights greater than 50 percent above the GDSS/ASRR published WBC value requires airfield authority/airfield manager approval in addition to senior leader waiver (as appropriate); follow waiver guidance in Paragraph 1.4. (T-2)

3.1.4. Pavement condition. Airfield pavement in substandard condition poses an increased risk of FOD due to substantial deterioration from distresses caused by aircraft loadings and environmental conditions. For this reason, mobility aircraft, (except for C-17 and C-130) are restricted from operating on “Serious” pavement with a pavement condition index (PCI) rating <= 25 without a waiver. Pavement rated in serious condition has mainly high-severity distresses which cause operational restrictions and immediate repairs are necessary. Aircraft are not permitted to operate on failed pavement (PCI <=10). (T-2)

3.1.5. Pavement Tire Pressure Limits. It is crucial to consider the impact of aircraft tire pressure on airport pavement. Flexible pavement is subject to rutting while rigid pavement is subject to cracking as a result of continual loading by aircraft with tire pressures exceeding established limits. The PCN rating method incorporates aircraft tire pressure limits to which MAF aircraft must adhere. Aircraft tire pressure limits for pavement with a PCN rating are denoted by the third letter (W, X, Y, or Z) of the five part PCN code, e.g., 31/F/C/W/T. This means that pavement with a “W” rating can support all aircraft, while that rated with an “X” is limited to tire pressure of 182 psi to 254 psi etc., see Figure 1.
3.1.5.1. Approval must be obtained from the airfield manager or appropriate airfield authority to operate with tire pressure exceeding PCN limits. (T-2)

3.1.5.2. Operations exceeding tire pressure limits on pavement with a PCN rating of “Z” requires a waiver in addition to airfield manager or appropriate airfield authority approval. (T-2)

3.1.5.3. AMC aircraft use data published in GDSS Airfield Detail and procedures outlined in the ASRR unless otherwise specified in applicable AFI 11-2MDSV3.

3.2. Airfield Obstacles. Airfield obstacles can impact landing and/or ground operations. Avoiding airfield obstacles is an aircrew responsibility. AMC planners must identify potential landing and ground obstacle hazards in advance to mitigate adverse impacts to the safe and efficient use of an airport. When the mission mandates aircraft operations into a non-standard, underdeveloped, or remote location, it is essential that planners and crews
make every effort to evaluate airport obstacles such as vegetation, signage, etc., to ensure aircraft clearance and safety. Known airport obstructions impacting landing and ground operations are included in all GDSS Airfield Detail (Giant Report) assessments and the associated guidance and restrictions apply to designated mobility aircraft unless otherwise specified in appropriate AFI 11-2MDSV3. The following procedures and standards are to be adhered to for analysis of obstructions with potential to affect aircraft landing and/or ground maneuvering operations. (T-2)

3.2.1. Landing and ground operation obstacle analysis.

3.2.1.1. AMC aircraft are initially restricted to day only operations where runway and taxi obstacle information from official sources is unavailable, questionable, or insufficient, pending authorized feedback. EXCEPTION 1: Aircraft other than C-5 are not restricted at airfields with known B747, B777, A380, AN124, or AN225 traffic. EXCEPTION 2: C-5 aircraft may operate day only into airfields with known B747, B777, A380, AN124, or AN225 traffic pending feedback about obstacles. (T-2)

3.2.1.2. Analysts, planners and/or aircrews are expected to use the best available obstacle data for a particular airport at the time of analysis. Contact the AMC Airfield Help Desk regarding questions concerning obstacle data or to provide feedback.

3.2.1.3. AMC periodically confirms the accuracy of obstacle data and suitability of assessment procedures in GDSS Airfield Detail assessments, normally on an annual basis, sometimes more frequently when new data becomes available. Accordingly, aircrew and planner feedback are essential to incorporate changes that occur outside normal analysis review cycles.

3.2.2. Obstacle clearance standards for runway and taxiway operations. Approval is required prior to AMC or AMC-gained missions being planned to operate on runways with obstacles that penetrate the following criteria.

3.2.2.1. Runway approval obstacles. Pilots of AMC and AMC-gained aircraft will land past (and takeoff prior to) runway approval obstacles; these are obstacles in proximity to the runway taller than the height of the wing tip or nacelle when bank is 3.5° (5° for C-17 and C-130) and located within the edge of the wing tip or nacelle of the aircraft plus 35 feet (Figure 2). Aircrew will treat runway approval obstacle as a displaced threshold to ensure obstacle clearance. The ASRR contains runway approval obstacle height and distance criteria for specific mobility aircraft. (T-2)
3.2.2.2. In addition to approval obstacles, GDSS Airfield Detail provides advisories to aircraft commanders regarding known obstacles that may affect 180° turns on the runway. Advisory obstacles are listed if they are located within wing tip or nacelle height of the aircraft plus 25 feet with aircraft gear on the runway edge. The ASRR contains runway advisory obstacle height and distance criteria for specific mobility aircraft. Aircraft intending to operate on runways with obstacles that penetrate ASRR advisory criteria are required to check GDSS Airfield Detail for the latest information.

3.2.2.3. Taxiway obstacles. AFI 11-218, *Aircraft Operations and Movement on the Ground*, and AMC Supplement, outline mandatory obstacle clearance for taxi operations. In order to adhere to these instructions, AMC has formed well-defined guidance concerning what constitutes an obstacle. In the absence of MDS-specific guidance, AMC and AMC-gained aircraft are restricted from taxiing past obstacles located within 10 feet of the wing tip or nacelle, and taller than the height of the wing tip or nacelle when depressed at 3.5° (5° for C-17 and C-130). MDS-specific tables and information are contained in the ASRR. (T-2)

3.2.2.3.1. Exception: Aircraft are authorized to operate on marked taxiways with lights as tall as 30 inches without a wing walker provided fixture height does not equal or exceed “Wings Level” height values listed in the ASRR in the immediate vicinity of the aircraft feature (nacelle, wingtip, etc.) and they can ensure clearance.
3.2.2.3.2. Taxiway edge lights are typically located 10 feet from the edge of full-strength pavement, however, guidance allows for placement as close as the taxiway edge. Standard taxiway light fixture height is 14 inches, however, locations where snow accumulation is a concern may have fixtures as tall as 30 inches; even taller fixtures exist at some locations.

3.3. **Destination Airfield Terminal Instrument Procedures Review:**

3.3.1. Reviews of selected instrument approach and departure procedures necessary to complete the mission are normally accomplished by the MAJCOM TERPS office responsible for the geographic region in which the airport is located. TERPS review letters are posted in GDSS Airfield Detail.

3.3.2. To assist the TERPS Operational Risk Management (ORM) process and facilitate instrument approach procedure publication, the MAJCOM TERPS office requests explicit feedback on instrument procedures at specified locations in the form of a live flyability check. Instrument procedures that require a flyability check have a complete, valid TERPS review, but require a flyability check before the procedure can be published in DoD FLIP. Consequently, aircrews should complete any flyability feedback form that has been appended in GDSS and posted in the Giant Report for a specific location.

3.3.2.1. 618 AOC ensures flyability execution guidance (outlined in following paragraphs) is incorporated into the aircrew’s Aviation Operational Risk Management.

3.3.2.2. To complete a live flyability check aircrews should request execution of the specific instrument procedure from host nation Air Traffic Control (ATC). Clearance for a visual approach while also being able to maneuver on the instrument procedure ground track concurrently monitoring obstacle clearance and NAVAID signal strength also meets flyability check requirements. See AFI 11-230, Attachment 7 for specific guidance.

3.3.2.3. In lieu of flying the Missed Approach Procedure, aircrews may visualize and analyze the Missed Approach track during departure, as conditions permit.

3.3.2.4. Aircrews will document those segments of the procedure actually flown. The publishing MAJCOM TERPS and flying authorities will mitigate the lack of an aircrew’s ability to fly and report on all segments.

3.3.2.5. Instrument Procedures at flyability locations cannot be published into the DoD FLIP without a live flyability check. Return all flyability feedback forms to requesting TERPS authority within five duty days after mission completion.

3.3.3. The TERPS review and approval restrictions, posted on GDSS Airfield Detail, apply to all USAF aircraft unless a MAJCOM-specific restriction is annotated. MAJCOM-specific restrictions can be more or less restrictive than the basic TERPS review letter and apply only to the specified MAJCOM and associated MAJCOM-gained aircraft.

3.3.4. Planners and aircrews are responsible for checking GDSS Airfield Detail to determine whether the necessary procedure review has been accomplished and approved for use. Planners and aircrews must pay close attention to the details of the approved
TERPS review. All TERPS reviews required for multi-leg missions may not be completed prior to the mission start date. Additionally, be aware the Defense Internet NOTAM Service (DINS) does not support instrument procedures posted in GDSS. Therefore, the status of TERPS reviews must be verified daily while enroute prior to the arrival date at the destination airfield. Refer to AFI 11-202V3 for other detailed guidance concerning USAF aircrew use of non-USG FLIP products.

3.3.5. TERPs reviews are valid only for the instrument flight procedures, page numbers, and effective dates listed. The minimum number of procedures to be reviewed by the TERPS office for any given location is outlined in the ASRR but exceptions may be negotiated by the mission planner or aircrew on a case by case basis with the applicable TERPS office.

3.4. **Certification Airfield.** Certification Airfields have highly unique hazards and/or operating procedures requiring increased preparation, awareness and familiarity on the part of the aircrew. In order for a particular crew to operate at a Certification Airfield, the aircraft commander must have operated into that airfield within the past two years as pilot, copilot, or observer who actively monitored the approach. Waiver authority is the aircraft commander’s (AC’s) Operations Group Commander (OG/CC). (T-3)

3.4.1. AMC/A3V assigns the Certification Airfield designation based upon aircrew and safety recommendations and other data as appropriate.

3.4.2. A complete listing of AMC Certification Airfields is in the ASRR.

3.5. **Special Pilot-In-Command Airport.** Airports are considered for designation as a Special Pilot-In-Command (PIC) airport based upon aircrew and safety recommendations, or classification as a FAA Special Pilot-In-Command Qualification Airport IAW Code of Federal Regulations, Title 14 – Aeronautics and Space, Part 121, Section 121.445 (14 CFR §121.445). The specific reason for classification as a Special PIC airport (mountainous terrain, unique procedures, etc.) is included in the assigned airfield restriction in the GDSS Airfield Detail/Giant Report.

3.5.1. Pilot experience requirement. No crew shall operate to/from a Special PIC airport unless, within the preceding 12 calendar months, a pilot crew member has made an entry to the airport (a takeoff or landing) while performing pilot duties in one of the primary seats. (T-3)

3.5.2. The pilot experience requirement does not apply when the ceiling, within plus or minus (+/-) 1 hour Estimated Time of Arrival (ETA), is at least 1,000 feet above the lowest Minimum Enroute Altitude (MEA), Minimum Obstruction Clearance Altitude (MOCA) or initial approach altitude for the instrument approach procedure for that airport, and visibility at the airport is at least three Nautical Miles (NMs).

3.5.3. Review of NGA produced Airport Qualification Program (AQP) charts/pictorials or commercially available Jeppesen® AQP products also satisfy the pilot experience requirement for a Special PIC airport. If AQP products are unavailable, an airfield briefing from a home-station, deployed, or stage-operated Tactics office which includes airfield imagery, an overview of terrain features, and other unique airfield information may be used to satisfy pilot experience requirements. Exception: For C-20, C-32, C-37, C-40 and VC-25, an alternate pictorial/graphical airfield study, approved by the AC’s
OG/CC or PAG/CC, satisfies pilot experience requirements when one of the aforementioned resources is not available.

3.6. **Mountainous Terrain:**

3.6.1. Airfields are considered to be in mountainous terrain in GDSS Airfield Detail if any of the following three criteria are met: 1) terrain is above 3,000 feet outside US domestic airspace; 2) terrain varies more than 1,000 feet in elevation within 10 NMs of the airfield; or 3) airfield is in a designated mountainous area IAW Code of Federal Regulations, Title 14 – Aeronautics and Space, Part 95, Section 95.11 (14 CFR §95.11).

3.6.2. In other than day Visual Flight Rules (VFR), pilots may only fly below the Minimum Safe Altitude (MSA) at airfields in the vicinity of mountainous terrain if under radar control or established on a segment of a published or MAJCOM approved arrival procedure, instrument approach, or departure procedure. In addition, to fly below the MSA, pilots must reference on-board navigation equipment capable of deriving an integrated navigation solution that will keep their aircraft clear of terrain. However, unless otherwise restricted, pilots may fly VFR at night to/from airfields in the vicinity of mountainous terrain provided they are able to ensure situational awareness and keep the aircraft clear of terrain using one or more of the following methods: a) receive radial/Distance Measuring Equipment (DME) in the vicinity of the airfield, b) reference on-board Global Positioning System (GPS) equipment to derive an integrated navigational solution, or c) fly VFR utilizing Night Vision Devices (NVDs) with reference to other onboard navigation solutions. (T-2)

3.7. **Landing Illusion (black hole):** Night operations are approved provided an authorized precision approach is available and flown; or Visual Approach Slope Indicator (VASI)/Precision Approach Path Indicator (PAPI)/Optical Landing System (OLS) lighting is operational for the landing runway; or aircraft is equipped with an operable Glide Path indicator IAW AFI 11-2MDSV3. Night departure from an airport with a black hole landing illusion incurs the same aforementioned requirements for possible emergency return, or other takeoff alternate suitable for night landing to be available. (T-2)

4. **Responsibilities:**

4.1. **AMC is responsible to:**

4.1.1. Ensure the ASRR and GDSS Airfield Detail are revised annually for accuracy, clarity, and updated with the most current and best available airfield data and information.

4.1.2. Ensure the ASRR and GDSS Airfield Detail are made available to USAF aviation planners and crews IAW AFI 11-2MDSV3. Other services are supported as resources allow.

4.1.3. Maintain an airfield help desk function to handle inquiries and provide clarification and/or interpretation relating to destination airfield pavement and/or obstacle data, suitability analysis, or issues related to this instruction, GDSS Airfield Detail, and ASRR.

4.1.4. Establish procedures to ensure AMC airfield management personnel review the ASRR and GDSS Airfield Detail for currency and accuracy at least semi-annually and,
prior to implementation, coordinate with HQ AMC/A3A regarding any long-term permanent changes to airfield data or procedural actions that could affect operating restrictions for incorporation into GDSS Airfield Detail and ASRR.

4.1.5. Ensure completed TERPS reviews from other MAJCOMs are forwarded to the HQ AMC TERPS office (A3AT) IAW AMC Airfield Suitability and Restrictions Report (ASRR) guidance on disseminating Foreign Terminal Instrument Procedure (FTIP) information via AMC GDSS.

4.1.6. Ensure AMC Civil Engineer Operations (A4OC) provides expertise and advice concerning pavement evaluation report questions and issues involving weight bearing capacity, pavement condition, tire pressure limits, and other pavement related matters that impact or have potential to impact aircraft operations.

4.2. **AMC/A3/10 is responsible to:**

4.2.1. Ensure AMC Airfield Suitability office Airfield Analysts have successfully completed an appropriate AFCESA Airfield Pavement Evaluation Course.

4.2.2. Ensure the ASRR and GDSS Airfield Detail airfield assessments are regularly reviewed, revised and updated as new information and/or official feedback becomes available (the ASRR policy document is revised and published on a periodic basis).

4.3. **18 AF is responsible to:**

4.3.1. Establish procedures to ensure planners and flight managers review airfield suitability IAW guidance in this publication, GDSS Airfield Detail and the ASRR, advising aircrews of hazards and operating restrictions as required, weight bearing capacity waivers, etc.

4.3.2. Ensure Command and Control (C2) and Air Operations Center (AOC)/Air Mobility Division (AMD) personnel examine pertinent GDSS TERPS reviews as appropriate and confirm approval of destination airfield(s) instrument procedures prior to mission launch.

4.3.3. Ensure wing planners assume responsibility to confirm current GDSS Airfield Detail information when they receive the Mission Operating Directive (MOD) until the “mission set-up” is passed to the squadron that will operate the mission. Final responsibility for mission conduct remains with the aircraft commander.

4.3.4. Ensure wing planners task aircrews to provide feedback and pass GDSS Airfield Detail advisory/approval information to aircrews. Unit Current Operations will include similar remarks in the “mission set-up” for the squadron that will operate the mission.

4.4. **618th Air Operations Center (Tanker Airlift Control Center) or 618 AOC (TACC) is responsible to:**

4.4.1. Assure mission planners and flight managers will determine airfield suitability IAW guidance in the ASRR and GDSS Airfield Detail.

4.4.2. Ensure flight managers check GDSS Airfield Detail to confirm the most current airfield restrictions information during mission execution, as required.
4.4.2.1. Assign aircrews to accomplish a live flyability check when necessary, and provide instrument procedures feedback in the form of the flyability report to AMC/TERPS.

4.4.2.2. Wing planners are responsible for the aforementioned duties for off station training (OST) and other unique wing missions that are not planned by the 618 AOC (TACC).

4.5. **Command and Control (C2) Responsibilities:**

4.5.1. Flight managers review sorties transiting “T” coded airfields (refers to ASRR suitability “T” code denoting TERPS approval may be required) to confirm AMC approval of Host Nation/Jeppesen instrument procedures. If Host Nation/Jeppesen procedures are out of date 618 AOC (TACC) C2 notifies the aircraft commander and helps to determine an appropriate course of action.

4.5.2. Contact AMC Airfield Suitability office or on-call officer via the 618 AOC (TACC) during non-duty hours, with requests for waiver to airfield suitability restrictions.

4.5.3. C2 personnel review all GDSS Mission Detail information, to include mission planning (MP), information (Info) and mission (Msn) remarks on those missions scheduled to originate and/or transit their airfields. Note: GDSS Mission Detail is also known as the mission directive or referred to informally as the “Form 59”.

Brian S. Robinson, Brigadier General, USAF
Director of Operations, Strategic Deterrence, and Nuclear Integration
Attachment 1

GLOSSARY OF REFERENCES AND SUPPORTING INFORMATION

References

AFPD 10-21, *Air Mobility Lead Command Roles and Responsibilities*, 30 April 2014
AMCI 11-208, *Mobility Air Forces Management*, 08 February 2017

Code of Federal Regulations, Title 14 – Aeronautics and Space, Part 95, Subpart B, Designated Mountainous Areas; and Part 121, Subpart O, Section 121.445 – Pilot in command airport qualification: Special areas and airports.

DoD Flight Information Publication (Enroute); IFR Supplement, NGA cyclic flight publication released every 8 weeks.

HQ AMC publication; Airfield Suitability and Restrictions Report, published periodically.

National Geospatial-intelligence Agency publication; Aeronautical Production Manual, November 2002

Prescribed Forms

None
Adopted Forms
AF Form 679, Air Force Publication Compliance Item Waiver Request/Approval
AF Form 847, Recommendation for Change of Publication

Abbreviations and Acronyms
ACN—Aircraft Classification Number
AFCEC—Air Force Civil Engineer Center
AFDD—Air Force Doctrine Document
AFI—Air Force Instruction
AFMAN—Air Force Manual
AFPD—Air Force Policy Directive
AFRC—Air Force Reserve Command
AFTRANS—Air Forces Transportation
AIP—Aeronautical Information Publication
AMC—Air Mobility Command
AMCI—Air Mobility Command Instruction
AMD—Air Mobility Division
ANG—Air National Guard
AOC—Air Operations Center
AQP—Airport Qualification Program
ASRR—Airfield Suitability and Restrictions Report
ATC—Air Traffic Control
CAC—Common Access Card
CSAF—Chief of Staff of the Air Force
C2—Command and Control
DASA—Destination Airfield Suitability Analysis
DME—Distance Measuring Equipment
DoD—Department of Defense
ESP—Expeditionary Site Plan
ETA—Estimated Time of Arrival
FAA—Federal Aviation Administration
FLIP—Flight Publications
FOD—Foreign Object Damage
FTIP—Foreign Terminal Instrument Procedure
GDSS—Global Decision Support System
GPS—Global Positioning System
IAW—in accordance with
ICAO—International Civil Aviation Organization
IFR—Instrument Flight Rules
LCN—Load Classification Number
LDA—Landing Distance Available
LM App—Location Management Application.
LZ—Landing Zone
MAF—Mobility Air Force
MAJCOM—Major Command
MDS—Mission Design Series
MEA—Minimum Enroute Altitude
MFR—Memorandum For Record
MOCA—Minimum Obstruction Clearance Altitude
MOD—Mission Operating Directive
MOU—Memorandum of Understanding
MSA—Minimum Safe Altitude
NGA—National Geospatial-Intelligence Agency
NM—Nautical Mile
NVD—Night Vision Device
OCONUS—outside the continental United States
ORM—Operational Risk Management
OST—Off Station Trainer
PAG—Presidential Airlift Group
PCI—Pavement Classification Index
PCN—Pavement Classification Number
PIC—Pilot in Command
SPRO—Semi-Prepared Runway Operation
TERPS—Terminal Instrument Procedure
UPAM—Unit Program Account Manager
USAF—United States Air Force
USG—United States Government
USTRANSCOM—United States Transportation Command
VFR—Visual Flight Rules
WBC—Weight Bearing Capacity